
An Improved Heft Algorithm Using Multi-
Criterian Resource Factors

Renu Bala

M Tech Scholar, Dept. Of CSE ,
Chandigarh Engineering College,

Landran , Mohali , Punajb

Gagandeep Singh

Assistant Professor, Dept. Of CSE ,
 Chandigarh Engineering College,

Landran , Mohali ,Punjab

Abstract- Since the HEFT algorithm primarily work on basics
of the calculated earliest time in execution from the available
resources, it ignores the factors that affect the time in
execution of tasks. The proposed algorithm includes multiple
new factors for matching right resources for particular task to
be scheduled. These factors include inter-node bandwidth
between VM nodes, storage, and RAM requirement for
execution of task. The proposed algorithm shows that the
algorithm is able to reduce the turnaround time, as well as the
waiting and execution time due to correct selection of
resources dependent on the RAM, bandwidth and storage
factors.

Index Terms- Scheduling, Cloud Computing, HEFT
Algorithm.

I. INTRODUCTION
Scheduling refers to the set of policies to control the order
of work to be performed by a cloud. Scheduling policies in
a cloud environment vary depending on the deployment
model of the cloud. Scheduling manages availability of
cloud/resource grid and good scheduling policy gives
maximum utilization of resource [13]. Job scheduling is
one of the major activities performed in all the computing
environments. Cloud computing has tremendous
capabilities and to make effective use of limitless
capabilities efficient scheduling algorithms are required as
cloud computing is one of the upcoming latest technology
which is developing drastically. Scheduling strategy is the
key technology in cloud computing [7]. The scheduling
process in cloud can be summarized into three stages:

1) Resource discovery and filtering: The resources present
in the network system are discovered and information
related to them is collected.
2) Resource selection: The target resource is selected based
on certain parameters of task and resource.
3) Task submission: The task to be executed is submitted to
resource selected.

The goal of scheduling algorithms in distributed systems is
spreading the load on processors and maximizing their
utilization while minimizing the total execution time [6].
There are two main categories of scheduling algorithm:
1. Static scheduling algorithm
2. Dynamic scheduling algorithm

Both have their own advantages and limitations. However,
Dynamic scheduling algorithm but has a lot of overhead

compare to it. In static scheduling, optimal resource
allocation of activities over time is done and all resources
and all activities are given. There is no uncertainty in the
behavior of resources and activities [11].
In a cloud, there are four main entities and that are cloud
user, Broker, Virtual Machines and Physical Machines. The
cloud users are the actual consumers of services and can
submit their service requests from anywhere in the world.
A cloud datacenter comprises of physical machines. By
utilizing virtualization technology, virtual machines are
created on the top of physical machines. Broker acts as an
intermediator between cloud users and cloud datacenters. It
is responsible for allocating cloud resources to client’s
work flow applications [14].
There have been various types of scheduling algorithm
existing in distributed computing system. The scheduling
algorithms provide benefit to both, the cloud user as well as
the service provider [8]. Scheduling algorithms can be
designed in the following ways:-

1. It can be designed in such a way that they satisfy the
Quality of Service (QoS) constraints imposed by cloud
users.
2. It can be designed to perform load balancing among
virtual machines which results into improvement of
resource utilization at service provider’s end.

II. RELATED WORK
There have been various types of scheduling algorithm
existing in distributed computing system. Traditional job
scheduling algorithms are not able to provide scheduling in
the cloud computing tended to use the direct tasks of users
as the overhead application base. There is an urgent need to
develop new scheduling strategies that may use some of the
conventional scheduling concepts to merge them together
with some network aware strategies to provide solutions for
better and more efficient job scheduling for next generation
of cloud.
Bittencount Luiz F. et. al. [1] provides an improvement of
Heterogeneous Earliest Finish Time (HEFT) which does
not consider the estimates o a single task for the locally
optimal decisions but also look ahead in the schedule and
consider the information that effect the children of the task
by the decisions made. The key idea of this paper is to
improve the process of scheduling tasks in HEFT, by
looking ahead and considering information about the
descendants of a task.

Renu Bala et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 6958-6963

www.ijcsit.com 6958

Zhao H. et. al. [11] considered Heterogeneous Earliest
Finish Time (HEFT) algorithm for scheduling the tasks of
an application, represented by a directed acyclic graph,
onto a bounded number of heterogeneous machines. In this
paper, a number of different options for computing the
weights in HEFT are considered. In HEFT, a weight is
allocated to each node and edge of the graph, based on the
average computation and communication, respectively. At
that point, the graph is traversed upwards and a rank value
is assigned to each node. Tasks are then scheduled, in order
of their rank value, on the machine which gives the earliest
finish time.
Topcuoglu H. et. al. [8] presents low-complexity efficient
heuristics known as Heterogeneous Earliest-Finish-Time
(HEFT) algorithm and the Critical –Path-on-a-Processor
(CPOP). These scheduling algorithms are used for a
bounded number of heterogeneous processors with an
objective to simultaneously meet high performance and fast
scheduling time. The HEFT algorithm selects the task with
the highest upward rank value at each step and assigns the
selected task to the processor, which minimizes the earliest
time with an insertion-based approach. But the CPOP
algorithm uses the summation of upward and downward
rank values for prioritizing tasks.
Cui Lin et. al. [3] proposed a new workflow scheduling
algorithm to schedule a workflow elastically on a cloud
computing environment which is known as SHEFT
(scalable Heterogeneous Earliest-Finish-Time) algorithm.
As per this paper, In a cloud computing environment, even
though the number of assigned resources to a workflow can
be elastically scaled, there exists some scheduling problems
such as the number of resources cannot be automatically
determined on demand of the size of a workflow and the
resources assigned to a workflow are not released until the
workflow completes an execution. To solve these
scheduling problems, Scalable heterogeneous Earliest-
Finish-Time (SHEFT) is proposed.
Selvarani S. et. al. [8] proposed an Improved Cost-Based
scheduling Algorithm in this paper. The improved Cost-
Based Scheduling Algorithm in cloud computing is
employed for making efficient mapping of tasks to
available resources in the cloud. This algorithm selects a set
of resources to be used for computing. The results show
that the processing cost spent to complete tasks after
grouping the tasks is very less when compared with the
processing cost spent to complete the tasks without
grouping the tasks.
Chen Weiwei et. al. [2] introduces Workflowsim simulator,
which extends the existing CloudSim simulator by
providing a higher layer of workflow administration. In this
paper, new workflow simulator is introduced which takes
into consideration heterogeneous system overheads and
failures that existing workflow simulators fail to provide.
Long W. et. al. [6] introduces a simulation framework
called CloudSim which provides simulation, power to
manage services and modeling of cloud infrastructure.
Cloud computing will be a major technology in the
development of the future Internet of Services. Service
providers want to remove the bottle neck of the cloud
computing system in order to satisfy user requirement.

III. EXISTING ALGORITHM
The HEFT Algorithm is an application scheduling
algorithm for a bounded number of heterogeneous
processors. The algorithm first constructs a priority list of
tasks and then locally optimal allocation decisions for each
task are made on the basis of the task’s estimated finish
time. The objective of efficient scheduling is to map the
tasks onto the core processors and execution order is set so
that task precedence requirements are satisfied and
minimum schedule length is given. The HEFT algorithm is
an effective solution for the DAG scheduling problem on
heterogeneous systems because of its robust performance,
low running time, and the ability to give stable performance
over a wide range of graph structures. The limitation of
HEFT algorithm is that it uses techniques that are all static
approaches of the mapping problem that assume static
conditions for a given period of time and also in complex
situations it can easily fail to find the optimal scheduling.
[2][17].

1) The HEFT algorithm first calculates average execution
time for each task and average communication time
between resources of two successive tasks. Let time (Ti, r)
be the execution time of task Ti on resource r and let Ri be
the set of all available resources for processing Ti. The
average execution time of a task Ti is defined as

 ωഥ ꞊
∑ ୲୧୫ୣ(౨∈ ,୰)|ୖ| (3.1)

2) Let time (eij , ri, rj)be the data transfer time between
resources ri and rj which process the tasks Ti and Tj
respectively. Let Ri and Rj be the set of all available
resources for processing Ti and Tj respectively. The average
transmission time Ti to Tj is defined by:

 cనഥ =
∑ ୲୧୫ୣ(ୣౠ,୰,୰ౠ)౨	∈	,౨ౠ∈ౠ|ୖ|	|ୖౠ| (3.2)

3) Then tasks in the workflow are ordered in HEFT based
on a rank function. For a exit task Ti, the rank value is:

 rank (Ti) = ഥ߱ (3.3)
4) The rank values of other tasks are computed as:
rank (Ti) = ωనതതത + maxౠ∈ୱ୳ୡୡ()(cనഥ + rank (Ti)) (3.4)

where, succ(Ti) is the set of immediate successors of
task Ti. The algorithm then sorts the task by decreasing
order of their rank values. The task with higher rank value
is given higher priority. In the resource selection phase,
tasks are scheduled according to their priorities and each
task is assigned to the resource that can finish the task at
the earliest time [19].

Algorithm 1. Heterogeneous –Earliest Finish-Time
(HEFT) algorithm
1: compute the average execution time for each task t ϵ Г
according to equation 3.1
2: compute the average data transfer time between tasks
and their successors according to equation 3.2
3: compute rank value for each task according to equation
3.3 and 3.4
4: sort the tasks in a scheduling list Q by decreasing order
of task rank value
5: while Q is not empty do

Renu Bala et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 6958-6963

www.ijcsit.com 6959

6: t remove the first task from Q
7: r find a resource which can complete t as earliest
time
8: schedule t to r.
9: end while

IV. PROPOSED ALGORITHM
The proposed algorithm is an improvement of the HEFT
algorithm. The HEFT algorithm is used to schedule many
kinds of tasks which have been put in a workflow, and
these tasks have different requirements in terms of
resources for successful execution. The goal of HEFT is to
minimize the workflow makespan but it does not consider
factors such as inter-node bandwidth, RAM and storage
memory. These factors are included in the proposed
algorithm for efficient working of the scheduling algorithm
and for better results.
1) Score of Request, SR is calculated which is

 SR ꞊
*	ௗ

where, a is get_BW_Reuested
 b is get_BW_internode_congestion_list
 c is get_RAM_Request
 d is get_Storage_Request
2) Score of Available, SA is calculated which is

SA꞊
௫௬ *

௭௨

where, x is get_BW_Available
 y is get some value based on TTL value (ping test)
 z is get_RAM_Available
 u is get_Storage_Available

Algorithm 2. Proposed Algorithm

1: compute the average execution time for each task t ϵ Г
according to equation 3.1
2: compute the average data transfer time between tasks
and their successors according to equation 3.2
3: for each task in workflow, if SA >SR, then continue:
4: compute compound rank value for each task according
to equation 3.3 and 3.4
5: sort the tasks in a scheduling list Q by decreasing order
of task rank value
6: while Q is not empty do
7: t remove the first task from Q
8: r find a resource which can complete t as earliest
time
9: schedule t to r.
10: end while

 A. PROPOSED APPROACH
We are using application specific workloads for giving
work to CloudSim simulator. This may require special
treatments to tasks and its dependency in terms of its
mapping the work to follow a specific flow.

Figure 4.1 Block Diagram showing the basic working of
the HEFT Algorithm and Proposed Algorithm

The development of system framework includes the
following steps that are explained in detail as follows:
A. Create Local and Global Broker
A cloud broker may be a third-party individual that acts as
an intermediately between the purchaser of a cloud
computing service and the seller of that service.
Local Broker: A local Broker is an entity that manages the
use, performance and delivery of cloud services and
establishes relationship between cloud service providers
and cloud service consumers.
Global Broker: A Global Broker system supports fast
provisioning of resource infrastructure needed in service
evaluation, system and computational resources, over the
multiple clouds.

B. Create Data Center
Datacenters are the resource providers in CloudSim 3.0.
Datacenter is the heart of the network cloud. Data center
process all work, which is submitted by various brokers.
Data center characteristics object that stores the properties
of a data center: architecture, OS, list of Machines,
allocation policy: time or space-shared, time zone and its
price. It encapsulates a set of compute hosts that can either
be homogeneous or heterogeneous with respect to their
hardware configurations (memory, cores, capacity, and
storage).Additionally, every Datacenter component
instantiates a generalized application provisioning
component that implements a set of policies for allocating
bandwidth, memory and storage devices to hosts and VMs.

Renu Bala et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 6958-6963

www.ijcsit.com 6960

In order to create a Power Datacenter, firstly we need to
create a list of store one or more machines. A machine
contains one or more PEs or CPUs/Cores. Therefore, users
should create a list to store this PEs (Processing Elements)
before creating a machine. Datacenter has its own policy of
how it will process the submitted work (or cloudlets).

C. Coding of HEFT Algorithm/Proposed Algorithm
The conversion of HEFT Algorithm and Proposed
Algorithm from pseudo code to coding in java using
NetBeans 7.0 is done for HEFT Algorithm, the tasks are
created and rank of each task is defined. The task with the
highest priority which is defined on the basis of rank of
each task is allocated resources and the task is executed.
The remaining tasks are executed in the same way.
For proposed algorithm, the bandwidth between each pair
of virtual machines in the bandwidths of Parameters is
specified and the aim is to optimize the communication
cost instead of using the average communication cost in
HEFT. In this, a scoring system based on RAM,
Bandwidths and storage is build.

D. Process Workflow
The workflow is processed that is the results of the HEFT
Algorithm and Proposed Algorithm is processed. The
output of both the algorithms are generated and then
recorded to create graphs. The graphs are created to
compare these two algorithms and to show that the
proposed algorithm is better which includes new
parameters. At the end, by comparing graphs it is checked
whether the work is successful or not.

V. RESULTS
The proposed algorithm is implemented on an Intel Core 2
Duo machine with 230 GB HDD and 3 GB RAM on 64-bit
OS. The experiments are conducted on a simulated Cloud
environment provided by CloudSim 3.0. The speed of each
processing element is expressed in MIPS (Million
Instructions Per Second) and the length of each cloudlet is
expressed as the number of instructions to be executed. The
algorithms are tested by varying the number of cloudlets
and also randomly varying the length of cloudlets. Also, the
number of VMs used to execute the cloudlets, are varied
accordingly. Comparative analysis of our proposed
algorithm with existing algorithm show that the proposed
algorithm have better results and is more reliable
scheduling algorithm. The following two parameters are
considered for the result evaluation:
A) Turnaround Time
It is the total time taken between the submission of a task
for execution and the return of the complete output to the
user.

Turnaround Time= Submission Time + Waiting Time +
Execution Time

The turnaround time is compared for the existing algorithm
(HEFT) [2][17] which is without including parameters and
the proposed algorithm with parameters. The comparison is
done with the number of tasks and by increasing the
number of tasks gradually. For any given scheduling
algorithm, it is expected that the turnaround time or the

total time in execution of task, from time it was submitted
till it got finally executed with success flag should be
minimized. The results obtained are shown in form of
graph in figures:

Figure 2. Turnaround Time Vs No. of Tasks (for parameter

Bandwidth 1024kpps)

Analysis: The inter-node bandwidth is added as a parameter
to study congestion and to implement resource dependency
and task execution dependency. The results from the graph
show that the turnaround time values for the proposed
algorithm is less as compared to the HEFT algorithm which
is required in the proposed algorithm.

Figure 3. Turnaround Time Vs No. of Tasks (for parameter

RAM 1024MB)

Analysis: If the job to be executed has data more than the
size of the RAM (4 GB), then the combination of HardDisk
and RAM is required and thus we have added this
parameter. From the results it is shown that the values of
turnaround time are less in case of proposed algorithm as
compared to the HEFT algorithm. This is due to the
additional RAM (i.e. 1024 MB) taken as a parameter.
B) Response Time
 The response time of a task or thread is defined as the time
when task is ready to execute to the time when it finishes
its job.

Response Time= Arrival Time – Finish Time

Renu Bala et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 6958-6963

www.ijcsit.com 6961

The response time is compared for the existing algorithm
(HEFT) [2][17] which is without including parameters and
the proposed algorithm with parameters. The comparison is
done with the number of tasks and by increasing the
number of tasks gradually. The results obtained are shown
in form of graph in figures:

Figure 3. Response Time Vs No. of Tasks (for parameter

Bandwidth 1024kpps)

Analysis: The response time depends on a variety of factors
and one of them is bandwidth. The network speed can be
increased by implementing inter-node bandwidth and the
result from the graph concludes that the proposed algorithm
has good response time.

Figure 4. Response Time Vs No. of Tasks (for parameter

RAM 1024MB)

Analysis: Initially, for any computational operations there
is first need for RAM. This memory is first utilized; hence
its availability helps the schedulers to perform better as
they are able to reduce the response, execution time. In the
graph, blue line represents the HEFT algorithm and red line
represents the proposed algorithm and it is evident from the
graph that the proposed algorithm outperforms the existing
algorithm as the line is below as shown in the above graph.

VI. CONCLUSION AND FUTURE WORK
In this research work, we studied the HEFT algorithm
[2][17] and found that it has certain limitations. The
research work proposed to implement their scheme. The
proposed algorithm based on HEFT algorithm consider
factors such as inter-node bandwidth, RAM memory,
Storage, etc. Results show that proposed algorithm is
reliable and by reliable we mean it checks resources and it
does not mismatch resources which were not done in the
HEFT algorithm. The proposed algorithm uses double
ranking that is selection criteria for tasks is based on
execution time and resources. Comparative analysis of our
proposed algorithm with existing algorithm [2][17] show
that the proposed algorithm have better results and is more
reliable scheduling algorithm. The future work to be carried
out under the current research work should includes
workload that is partitioned or divided before scheduler
takes on the workload for scheduling. There are existing
partition algorithm which implement clustering to achieve
this goal, however for future scope, we suggest
collaborative clustering approach to do new type of task
partitioning. By doing this, the underlying network of sub
tasks are also considered for taking partitioning decisions
rather than taking decision on the basis of Root Node
characters only.

REFERENCES
[1] Bittencourt, L.F., Sakellariou, R., and Madeira, E.R.M. (2010),

“DAG Scheduling Using a Lookahead Variant of the Heterogeneous
Earliest Finish Time Algorithm”, 18th Euromicro International
Conference on Parallel, Distributed and Network-Based Processing
(PDP), Publication IEEE Conference, 17-19 Feb. 2010, Pisa, pp. 27-
34.

[2] Chen, W. and Deelman, E. (2012), “WorkflowSim: A toolkit for
simulating scientific workflows in distributed environments”, 8th
International Conference on E-Science, IEEE Publication, 8-12 Oct.
2012, Chicago, IL, pp. 1-8.

[3] Cui Lin and Shiyong Lu (2011), “Scheduling Scientific Workflows
Elastically for Cloud Computing”, IEEE International Conference
on Cloud Computing on Cloud Computing (CLOUD), 4-9 July 2011,
Washington, DC, pp. 746-747.

[4] Dubey, S., Jain, V., and Shrivastava, S. (2013), “An Innovative
Approach for Scheduling of Tasks in Cloud Environment”, Fourth
International Conference on Computing, Communications and
Network Technologies (ICCCNT), IEEE Publication, 4-6 July 2013,
Tiruchengode, pp. 1-8.

[5] Fang, Y., Wang, F., and Ge, J. (2010), “A Task Scheduling
Algorithm Based on Load Balancing in Cloud Computing”, Web
Information Systems and Mining Lecture Notes in Computer
Science, Springer-Verlag Berlin Heidelberg, Vol. 6318, pp. 271-277.

[6] Long, W., Yuqing, L., and Qingxin, X. (2013), “Using CloudSim to
Model and Simulate Cloud Computing Environment”, 9th
International Conference on Computational Intelligence and Security
(CIS), IEEE Publication, 14-15 Dec. 2013, Leshan, pp. 323-328.

[7] Meng Xu, Lizhen Cui, Wang, H., and Yanbing Bi (2009), “A
Multiple QoS Constrained Scheduling Strategy of Multiple
Workflows for Cloud Computing”, IEEE International Symposium
on Parallel and Distributed Processing with Applications, 10-12
Aug. 2009, Chengdu, pp. 629-634.

[8] Selvarani, S. and Sadhasivam, G.S. (2010), “Improved cost-based
algorithm for task scheduling in cloud computing”, IEEE
International Conference on Computational Intelligence and
Computing Research (ICCIC), 28-29 Dec. 2010, Coimbatore, pp. 1-
5.

[9] Shah, S.N.M., Bin Mahmood, A.K., Oxley, A., and Zakaira, M. N.
(2012), “QoS based performance evaluation of grid scheduling
algorithms”, International Conference on Computer & Information
Science (ICCIS), IEEE Publication, 12-14 June 2012, Kuala
Lumpeu, pp. 700-705.

Renu Bala et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 6958-6963

www.ijcsit.com 6962

[10] Topcuoglu, H., Hariri, S. and Min-You Wu (2002), “Performance-
effective and low-complexity task scheduling for heterogeneous
computing”, IEEE transactions on Parallel and Distributed Systems,
Vol. 13, No. 3, pp. 260-274.

[11] Zhao, H. and Sakellariou, R. (2008), “An Experimental Investigation
into the Rank Function of the Heterogeneous Earliest Finish Time
Scheduling Algorithm”, Euro-Par 2003 Parallel Processing , Springer
Berlin Heidelberg, Vol. 2790, pp. 189-194.

Renu Bala et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 6958-6963

www.ijcsit.com 6963

